6.4210 Final Proposal: Throwing and Catching Bot

Throwing and catching are very important topics in the field of robotic manipulation, as
they are prerequisites for more complex robotic manipulations such as badminton, basketball,
juggling, table tennis, and so on. Even in simple daily tasks, humans use throwing skills when
putting something in trash, passing an object to a friend, or putting objects in boxes that are not
in reach. Similarly, humans use catching skills while receiving an object from someone else or
when a glass or plate falls from the side of a table. As a team of 3, we will be undergoing a
project that explores the dynamics of catching and throwing objects between two separate
robots in motion. The project is intended to be a multi-step process that will culminate in a
simulated demonstration of these robots throwing and catching a simple object back and forth
repeatedly in which the catching robot will have to move. If time permits we will attempt to
replicate at least one successful throw and catch on real-world hardware.

More precisely, we can describe the problem as follows. First, there is the throwing
problem. Questions such as planning the throw trajectory, being able to implement effective
control for differently shaped objects, and how to move to and plan a reasonable position to
maximize the success of the throw are some of the major questions that are present in just the
problem of throwing. Then of course there is the catching problem. For this operation, there is
the challenging problem of completing real-time trajectory planning of perceived aerial objects in
a very short time. At the same time, achieving a good prediction for object trajectories, and
optimizing the capture mechanism of the end-effector are both interesting problems that will
prove challenging, and have many applications outside of direct throwing and catching, such as
safe human-robot interaction under uncertainty.

Some important topics covered in class that we will be applying to our project include
geometric perception, determining optimal grasp positions, motion planning. Geometric
perception is an important concept for our problem because we need to determine two things
about the object: its pose in 3d space and the location of the center of mass of the object with
respect to the object frame. The center of mass of the object is an important aspect of our task
because when the grasper releases the object, the center of mass will follow a particular
trajectory but the rest of the object might fluctuate. We will be implementing what we learned
about optimal grasping since as opposed to the pick and place problem, we might need to
impose additional constraints on grasping to adapt to a throwing problem. For instance, to not
generate too much torque on the object, it is best if our antipodal grasp is near the center of
mass. Lastly, a major topic covered in class that will be pivotal in achieving our task is motion
planning. While throwing an object, we need to first determine a point for releasing the object
and the velocity at which it must be released. Then, we need to plan a trajectory for the robot
such that the robot reaches the desired velocity at the given point under acceleration
constraints. The acceleration constraints arise because there is an upper bound on how much
static friction there can be between the grasper and the object before the object starts slipping.
This is a motion planning problem unique to this instance because we do not have a particular
time when we want to throw the object. The information and experience we’ve gathered in class
will be a solid starting point for tackling several of the problems present in our project.

Building on the foundational knowledge gained in class, we will be incorporating some
previous research work to help us achieve our project goal. We will be referencing “A Solution
to Adaptive Mobile Manipulator Throwing” (Yang Liu, et al.) as this paper introduces mobile



6.4210 Final Proposal: Throwing and Catching Bot

manipulator throwing. This paper can be useful for the team to learn how to implement throwing
and apply it to the case of mobile manipulators. We will also be looking at “Revisiting Ball
Catching with a Mobile Manipulator: A Discrete Trajectory Planning Approach” (Ke Dong,
et al.) which can help us to understand how to catch a ball with a mobile manipulator. This paper
addresses this problem by constantly interweaving predictions and replanning to successfully
catch the ball in the air and implementing a new and different approach to the problem than
Sequential Quadratic Programming (SQP). Another important paper that we feel will be critical
to our work is "TossingBot: Learning to Throw Arbitrary Objects with Residual Physics"
(Andy Zeng, et al.) which will help us in understanding the challenges and methods of throwing
an object. Lastly, we will be referencing "Coordinated multi-arm motion planning: Reaching
for moving objects in the face of uncertainty" (Mirrazavi Sina, et al.) since this paper might
give us some idea about catching an object in motion and under uncertainty since the paper
involves intercepting a moving object. The paper also has an example where they catch a
fast-moving object with the coordinated efforts of two robots: a task we may consider exploring
for demonstration purposes.

To be successful and to make steady progress in our project, we will assign each
member individual tasks and convene bi-weekly to discuss progress, and if need be, integrate
work. By Nov 9 (Check-in 1) we will have had the simulation environment set up, registered
necessary scene objects, and implemented basic geometric perception and grasp selection for
the throwing robot. By Nov 30 (Check-in 2), we will have solved both the problem of creating
throw trajectories and motion planning for throwing to a fixed location. For the second robot, we
will combine the geometric perception algorithms implemented earlier with trajectory prediction
to generate an interception trajectory, for instance, by using the dynamical system methods
described by authors Mirrazavi Sina, et. al. Lastly, by Dec 7 we will use the throwing algorithm
and optimize the throw location so that the second robot can catch the object. As time allows,
we aim to test for different configurations of the robots and different (but known) objects. By the
end of the project period, we hope to fully realize the basic tasks of two robots throwing and
catching objects through the content learned in class and consulting a lot of extracurricular
materials. It's going to be tough, but we love a challenge.



6.4210 Final Proposal: Throwing and Catching Bot

High Level
Description

More detailed
description

Code

Priority/date

Grasp the brick

Grasp the brick at the

Input: robot position

-Quincy center of mass and brick position
Output: catch the
center of the brick
and go to the initial
position

Trajectory Throwing trajectory Input: Current pose of

design/Motion design the robot, final pose,

planning or maybe even time.

Hanqi Maybe constraints?
Output: Poses for the
robot (end effector) at
particular times.

Inverse Given a trajectory for | Input: A trajectory (list

kinematics/dynamics,
whatever we use
Arif

the robot, determine
the joint
angles/forces
depending on which
type of control we are
going to use

of poses, times)

Output: list of robot
joint angles.

Using the low level
controller for the
robot

-Arif

The inputs to the
robot (forces or any
other control method,
joint velocities)

Will figure out how to
command the robot in
drake

Perception for red
brick (catching)
-Quincy

The catching robot
needs to estimate the
trajectory of the brick,
so we need the pose
of the brick at certain
times.

Input: camera data
Output: Bounding box
of brick, pose of brick
in world frame

We might be able to
get the position of the
red brick from the
simulation. If we can
do so, we can delay
doing this.

Predicting future
poses of the brick
Hangqi

Given the history of
poses for the brick,
we need to predict
the pose at some
time t in the future.
We could use
polynomial fitting
(position should be a
quadratic of time) or

Input: history of
poses, times
Output: the next k
poses

Important for catching




6.4210 Final Proposal: Throwing and Catching Bot

physics based
methods for this,

Create intercept
trajectory for catching
-Arif

Design intercept
trajectory given some
intercept point within
the robot’s operation
space.

Input:
Output:

TBD

1)maybe catch a
small box to receive
the brick so that help
to achieve the
catching problem
2)and pull down the
brick into the larger
box

3)and once again to
catch the brick to
throw




